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Abstract. Thermodynamic quantities and correlation functions (CFs) of the classical antiferromagnet on
the checkerboard lattice are studied for the exactly solvable infinite-component spin-vector model, D →∞.
In contrast to conventional two-dimensional magnets with continuous symmetry showing extended short-
range order at distances smaller than the correlation length, r . ξc ∝ exp(T ∗/T ), correlations in the
checkerboard-lattice model decay already at the scale of the lattice spacing due to the strong degeneracy
of the ground state characterized by a macroscopic number of strongly fluctuating local degrees of freedom.
At low temperatures, spin CFs decay as 〈S0Sr〉 ∝ 1/r2 in the range a0 � r � ξc ∝ T−1/2, where a0 is
the lattice spacing. Analytical results for the principal thermodynamic quantities in our model are very
similar with MC simulations, exact and analytical results for the classical Heisenberg model (D = 3) on
the pyrochlore lattice. This shows that the ground state of the infinite-component spin vector model on
the checkerboard lattice is a classical spin liquid.

PACS. 75.10.Hk Classical spin models – 75.50.Ee Antiferromagnetics – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

Frustrated magnets are particularly interesting as they of-
ten involve unusual low temperature magnetic behaviors.
Depending on the nature of interactions, the local con-
nectivity, spin dimensionality, these systems stabilize un-
conventional magnetic ground states such as non collinear
Néel orders, topological spin glasses, classical or quantum
spin liquids, spin ices [1]. These observations are both ex-
perimental and theoretical eventhough some of them, like
topological spin glasses, are still conjectures. Among these
ground states, two families have a striking property. Spin
liquids, as well as spin ices, possess a residual entropy at
zero temperature. This anomaly and the paradox it raises
when considering the third principle of thermodynamics,
are major points that people have tried to answer.

Theoretical studies of frustrated antiferromagnets
started half a century ago with the exact solution of the
triangular Ising antiferromagnet by Wannier [2]. In the
following years, many lattices have been identified where
spin models, from Ising symmetry (Z2) to Heisenberg sym-
metry (O(3) or SU(2)), have disordered ground states.
Among them, two have attracted a lot of interest: the
kagomé lattice and the pyrochlore lattice [1]. The first
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one is a two dimensional arrangement of corner sharing
triangles, while the latter is a three dimensional structure
of corner sharing tetrahedra. When considering antiferro-
magnetic nearest neighbour interactions, they both dis-
play spin liquid like behaviors, well characterized theoret-
ically. Spin-spin correlations functions are exponentially
decaying at finite temperatures, even sometimes at T = 0,
in both classical and quantum cases.

Recently, another lattice has received attention as it
can be described as the two dimensional analog of the py-
rochlore lattice: the checkerboard lattice. One very inter-
esting point in this lattice is that its geometry mimics the
local environment of each site of the pyrochlore lattice,
but is much more simpler as it is two dimensional, and
based on a square lattice structure. This has allowed Lieb
and Schupp [3] to establish exact results in the quantum
case (S = 1/2) showing that the spectrum in this system
is very peculiar as ground states are necesseraly singlets
in finite size clusters. For S ≥ 1, it has been shown numer-
ically [4] within an 1/S expansion that the ground state
may have a local magnetization at zero temperature while
for S = 1/2 it was proposed that the system orders in a
valence bond solid ground state. A recent work [5] derived
a phase diagram of the ground states for varying S stat-
ing that this system is most likely ordered for all S. Exact
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diagonalization of finite clusters [6] for S = 1/2 reached
the same conclusion and define the ground state as a 4-
spin valence bond solid. A perturbative expansion also
found a 4-spin valence bond solid [7] but with a different
unit cell. There are now strong evidences that for small
S this system should have long range order in a valence
bond solid order parameter.

In this paper, we look for an exact solution on this
lattice in the opposite limit of high spin dimensionality.
Therefore, we study a classical Hamiltonian that corre-
sponds to the generalisation of the Heisenberg model with
D-component spin vectors [8,9]

H = −1
2

∑
rr′

Jrr′sr · sr′ , |sr| = 1 (1)

and taking the limit D→∞. In this limit the problem be-
comes exactly solvable for all lattice dimensionalities, d,
and the partition function of the system coincides [10]
with that of the spherical model [11,12]. The D = ∞
model properly accounts for the profound role played, es-
pecially in low dimensions, by the Goldstone or would be
Goldstone modes. At the same time, the less significant
effects of the critical fluctuation coupling leading, e.g.,
to the quantitatively different nonclassical critical indices,
die out in the limit D→∞. Thus this model is a relatively
simple yet a powerful tool for classical spin systems. It
should not be mixed up with the N -flavour generalization
of the quantum S = 1/2 model [13] in the limit N →∞,
including its 1/N expansion [14,15]. The N -component
nonlinear sigma model (see, e.g., Refs. [16], as well as
Refs. [17,18] for the 1/N expansion) is a quantum exten-
sion of equation (1) in the long-wavelength region at low
temperatures. Effective free energies for the n-component
order parameter appear, instead of equation (1), in con-
ventional theories of critical phenomena. Using them for
the 1/n expansion (see, e.g., Ref. [19]) is a matter of taste.
While yielding the same results for the critical indices as
the lattice-based 1/D expansion [20–22], it misses the ab-
solute values of the nonuniversal quantities.

In the following, we give the solution of this model on
the checkerboard lattice and show that its ground state is
a classical spin liquid. Particularly, it is shown that many
properties are similar to the pyrochlore lattice case [23] de-
spite the difference of lattice dimensionality. This strongly
suggests that these frustrated systems are mainly driven
by their local environment, i.e. by their topological frus-
tration, at least for D → ∞. The rest of this article is
organized as follows. In Section 2 the structure of the
checkerboard lattice and its collective spin variables are
described. In Section 3 the formalism of the D =∞ model
is tailored for the checkerboard lattice. The diagrams of
the classical spin diagram technique that do not disappear
in the limit D→∞ are summed up. The general analyti-
cal expressions for the thermodynamic functions and spin
CFs for all temperatures are obtained. In Section 4 the
thermodynamic quantities of the checkerboard antiferro-
magnet are calculated and compared with MC simulation
results as well as exact and analytical results previously
obtained on the pyrochlore lattice in the whole tempera-
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Fig. 1. The checkerboard lattice. It can be pictured as a square
lattice of tetrahedra (top). Locally, it reproduces the same en-
vironment as the three dimensional pyrochlore lattice. In our
calculations, it has been described by a square lattice with a
2-spins unit cell (bottom).

ture range. In Section 5 the real space correlation functions
are computed. We finally discuss our results in Section 6
and conclude.

2 Lattice structure and the Hamiltonian

Checkerboard lattice shown in Figure 1 consists of corner-
sharing tetrahedra. Each node of the corresponding
Bravais lattice (i.e., each elementary tetrahedron in Fig. 1)
is numbered by i, j = 1, . . . , N . Each site of the elemen-
tary tetrahedron is labeled by the index l = 1, 2. It is
convenient to use the dimensionless units in which the in-
teratomic distance equals 1/2 and hence the lattice period
equals 1. The tetrahedra numbered by i, j = 1, . . . , N can
be obtained from each other by the translations

rlj = rli + nuu + nvv, (2)

where rli is the position of a site on the lattice, nu and
nv are integers, u and v are the elementary translation
vectors (lattice periods), and

u = (1, 0), v = (0, 1). (3)

To facilitate the diagram summation in the next sec-
tion, it is convenient to put the Hamiltonian (1) into a
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diagonal form. First, one goes to the Fourier representa-
tion according to

slq =
∑
i

slie
−iq·rli , sli =

1
N

∑
q

slqeiq·rli , (4)

where the wave vector q belongs to the square Brillouin
zone Bzkx,ky = [−π, π]× [−π, π] (see Fig. 1). The Fourier-
transformed Hamiltonian reads

H =
1

2N

∑
ll′q

V ll
′

q slq·sl
′

−q, (5)

where the interaction matrix is given by

V̂q = 2J
(

a 2uv
2uv b

)
(6)

with a = cos(qx), b = cos(qy), u = cos(qx/2) and v =
cos(qy/2).

At the second stage, the Hamiltonian (5) is finally di-
agonalized to the form

H =
1

2N

∑
nq

Ṽ nq σ
n
q ·σn−q, (7)

where Ṽ nq = 2Jνn(q) are the eigenvalues of the matrix
V ll
′

q taken with the negative sign,

ν1 = 1, ν2 = −(1 + cos(qx) + cos(qy)). (8)

The diagonalizing transformation has the explicit form

U−1
nl (q)V ll

′

q Ul′n′(q) = Ṽ nq δnn′ , (9)

where the summation over the repeated indices is implied
and Û is the real unitary matrix, Û−1 = ÛT , i.e., U−1

nl =
Uln. The columns of the matrix Û are the two normalized
eigenvectors Un = (U1n, U2n) of the interaction matrix V̂ :

U1 =

√
1 + a

2 + a+ b

(
− 2uv

1 + a
, 1
)
,

U2 =

√
1 + b

2 + a+ b

(
1 + a

2uv
, 1
)
· (10)

The normalized eigenvectors satisfy the requirements of
orthogonality and completeness, respectively:

Uln(q)Uln′(q) = δnn′ , Uln(q)Ul′n(q) = δll′ . (11)

The Fourier components of the spins slq and the collective
spin variables σnq are related by

slq = Uln(q)σnq , σnq = slqUln(q). (12)

The largest dispersionless eigenvalue ν1 of the interac-
tion matrix (see Eq. (8)) manifests frustration in the sys-
tem which precludes an extended short-range order even
in the limit T → 0. Independence of ν1 of q signals that
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Fig. 2. Reduced eigenvalues of the interaction matrix, νn(q) =
Ṽ nq /(2J) of equation (7), plotted over the Brillouin zone. The
flat band signals that half of the degrees of freedom in this
system can rotate freely.

1/2 of all spin degrees of freedom are local and can rotate
freely. The other eigenvalue satisfy

ν2(q) ∼= −3 + q2/2 (13)

at small wave vectors, q2 ≡ q2
x + q2

y � 1. Within our
description of the checkerboard lattice, the would be usual
Goldstone mode corresponds to ν2. At the corners of the
Brillouin zone (±π,±π), this mode becomes degenerate
with the flat one and defines low energy excitations.

ν2(q̃) ∼= 1− q̃2/2 (14)

where q = (±π,±π)+ q̃, |q̃| � 1. It is the equivalent of the
usual Goldstone mode that is present in low-dimensional
magnets with a continuous symmetry. Thus, it is this
mode that will be associated with a correlation length,
as we will see in Section 5. It is remarkable that this
mode contains all information about dispersive excitations
present in this model. If we had choosen a four sites unit
cell [24] instead of a two sites one, we would have obtained
a similar description as the one done on the pyrochlore an-
tiferromagnet [23]. Then, an “optical” mode would have
been recovered, i.e. a mode with a finite energy gap for all
wave vector; the usual Goldstone mode would have been
degenerate with the flat one at q = 0 and the lowest not
dispersive branch, would have been two times degenerate.
This clearly shows the similarity of these two lattices as
it is expected because of the exact equivalence of the lo-
cal environment of each site. The q dependences of the
eigenvalues νn over the whole Brillouin zone are shown in
Figure 2.

In the next section the equations describing spin cor-
relation functions of the classical checkerboard antiferro-
magnet in the large-D limit will be obtained with the help
of the classical spin diagram technique. The readers who
are not interested in details can skip to equation (16) or
directly to Section 4.
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3 Classical spin diagram technique
and the large-D limit

The exact equations for spin correlation functions in the
limit D → ∞, as well as the 1/D corrections, can be the
most conveniently obtained with the help of the classical
spin diagram technique [25–27]. A complete description
of the technique applied to a non bipartite lattice can be
found in reference [28]. We only give here an outline of the
calculations.

Our goal is to compute spin-spin CF’s

sll
′
(q) = 〈snqsn−q〉 (15)

which are related to CF’s of the σ variables

σn(q) =
D

N
〈σnαqσ

n
α,−q〉 =

1
N
〈σnqσn−q〉, (16)

through the relation

sll
′
(q) = Uln(q)Ul′n(q)σn(q) (17)

following from equation (12).
The analytical expression for the σ CF in the SCGA

has the Ornstein-Zernike form

σn(q) =
DΛ̃

1− Λ̃βṼ nq
· (18)

In the large-D limit the expression of Λ̃ simplifies [25] and
is given by

Λ̃ =
2
D

1
1 +

√
1 + 8L/D

· (19)

Here the dispersion L is given by the formula

L =
Λ̃

2 · 2!

∑
n

v0

∫
dq

(2π)d
(βṼ nq )2

1− Λ̃βṼ nq
· (20)

The summation (1/N)
∑

q . . . is replaced by the integra-
tion over the Brillouin zone, v0 is the unit cell volume,
and d is the spatial dimensionality. For the square lattice
we have v0 = 1. The expression for L can be simplified to

L =
P̄ − 1

2Λ̃
, P̄ ≡ 1

2

∑
n

Pn, (21)

where Pn is the lattice Green function associated with the
eigenvalue n:

Pn = v0

∫
dq

(2π)d
1

1− Λ̃βṼ nq
· (22)

Now one can eliminate L from equations (19, 21), which
yields the basic equation of the large-D model,

DΛ̃P̄ = 1. (23)

This nonlinear equation determining Λ̃ as a func-
tion of temperature differs from those considered ear-
lier [25–27,29] by a more complicated form of P̄ reflecting
the lattice structure. The form of this equation is simi-
lar to that appearing in the theory of the usual spherical
model [11,12]. The meanings of both equations are, how-
ever, different. Whereas in the standard spherical model a
similar equation account for the pretty unphysical global
spin constraint, equation (23) here is, in fact, the normal-
ization condition 〈s2

r〉 = 1 for the spin vectors on each of
the lattice sites r. Indeed, calculating the spin autocorre-
lation function in the form symmetrized over sublattices
with the help of equations (17, 11), and (18), one obtains

〈s2
r〉 = v0

∫
dq

(2π)d
1
2

∑
l

sll(q)

= v0

∫
dq

(2π)d
1
2

∑
n

σn(q) = DΛ̃P̄ . (24)

That is, the spin-normalization condition is automatically
satisfied in our theory by virtue of equation (23). After
Λ̃ has been found from this equation, the spin CFs are
readily given by equations (18, 17).

To avoid possible confusions, we should mention that
in the paper of Reimers, reference [30], where equa-
tion (18) with the bare cumulant Λ = 1/D has been ob-
tained, the theoretical approach has been called “Gaussian
approximation (GA)”. This term taken from the conven-
tional theory of phase transitions based on the Landau
free-energy functional implies that the Gaussian fluctua-
tions of the order parameter are considered. In the mi-
croscopic language, this merely means calculating corre-
lation functions of fluctuating spins after applying the
MFA. Such an approach is known to be inconsistent,
since correlations are taken into account after they had
been neglected. As a result, for the checkerboard lat-
tice one obtains a phase transition at the temperature
Tc = TMFA

c = 2J/D but immediately finds that the ap-
proach breaks down below Tc because of the infinitely
strong fluctuations. In contrast to this MFA-based ap-
proach, the self-consistent Gaussian approximation used
here allows, additionally, to the Gaussian fluctuations of
the molecular field, which renormalize Λ̃ and lead to the
absence of a phase transition for this class of systems. The
SCGA is, in a sense, a “double-Gaussian” approximation;
one concerning fluctuations of the order parameter and the
other one describing fluctuations of the molecular field.

To close this section, let us work out the expressions
for the energy and the susceptibility of the checkerboard
antiferromagnet. For the energy of the whole system,
using equations (7, 16), as well as the equivalence of all
spin components, one obtains

Utot = 〈H〉 = −N
2

∑
n

v0

∫
dq

(2π)d
Ṽ nq σ

n(q). (25)

To obtain the energy pro spin U , one should divide this
expression by 2N . With the use of equation (18), the latter
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can be expressed through the lattice Green’s function P̄
of equation (21); then with the help of equation (23) it
can be put into the final form

U =
T

2

(
D − 1

Λ̃

)
· (26)

The susceptibility pro spin symmetrized over sublattices
can be expressed through the spin CFs as

χq =
1

2DT

∑
ll′

sll
′
(q). (27)

With the use of equation (17) this can be rewritten in the
form

χq =
1

2DT

∑
n

W 2
n(q)σn(q), Wn(q) ≡

∑
l

Uln(q),

(28)

where the diagonalized CFs are given by equation (18).
From equation (10) it follows that in the limit q → 0
one has W1 = 0 and W2 =

√
2. Thus the homogeneous

susceptibility χ ≡ χ0 simplifies to

χ =
1
DT

σ2(0). (29)

As we shall see in the next section, disappearance of the
terms with n = 1 from this formula ensures the nondiver-
gence of the homogeneous susceptibility of the checker-
board antiferromagnet in the limit T → 0. The situation
for q 6= 0 is much more intricate and it will be considered
below in relation to the neutron scattering cross section.

4 Thermodynamics of the checkerboard
antiferromagnet

To put the results obtained above into the form explicitly
well behaved in the large-D limit and allowing a direct
comparison with the results obtained by other methods
for systems with finite values of D, it is convenient to use
the mean-field transition temperature TMFA

c = 2J/D as
the energy scale. With this choice, one can introduce the
reduced temperature θ and the so-called gap parameter G
according to

θ ≡ T

TMFA
c

, G ≡ D

θ
Λ̃. (30)

In these terms, equation (23) rewrites as

θGP̄ (G) = 1 (31)

and determines G as function of θ. Here P̄ (G) is defined
by equation (21), where

P1 =
1

1−G, P2 = v0

∫
dq

(2π)d
1

1−Gν2(q)
, (32)

The σ CFs of equation (18), which are proportional to the
integrands of Pn, can be rewritten in the form

σn(q) =
θG

1−Gνn(q)
· (33)

Further, it is convenient to consider the reduced energy
pro spin defined by

Ũ ≡ U/|U0|, U0 = −J, (34)

where U0 is the energy pro spin at zero temperature. With
the help of equation (26) Ũ can be written as

Ũ = θ − 1/G. (35)

The homogeneous susceptibility χ of equation (29) can be
rewritten with the help of equation (13) in the reduced
form

χ̃ ≡ 2Jχ =
G

1 + 3G
· (36)

The sense of calling G the “gap parameter” is clear
from equation (33). If G = 1, then the gap in correlation
functions closes: σ1 turns to infinity, and σ2 diverges at
q → (±π,±π). For nonordering models, it happens only
in the limit θ→ 0, however. The solution of equation (31)
satisfies G ≤ 1 and goes to zero at high temperatures. If
θ � 1, the function P̄ is dominated by P1 = 1/(1 − G).
The ensuing asymptotic form of the gap parameter at low
temperatures reads

G ∼= 1− θ

2
, θ� 1. (37)

At high temperatures, equation (31) requires small values
of G. Here, the limiting form of P̄ can be shown to be
P̄ ∼= 1 + (3/2)G2. The corresponding asymptote of G has
the form

G ∼= 1
θ

(
1− 3

2θ2

)
, θ� 1. (38)

The numerically calculated temperature dependence of G
is shown in Figure 3. Note that in the MFA one has G =
1/θ which attains the value 1 at θ = 1.

The temperature dependence of the reduced energy of
equation (35) is shown in Figure 4. Its asymptotic forms
following from equations (37, 38) are given by

Ũ ∼=
{
−3/(2θ), θ � 1
−1 + θ/2, θ � 1. (39)

This implies the reduced heat capacity C̃ = dŨ/dθ equal
to 1/2 at low temperatures. To compare with the MC sim-
ulation data of reference [31] for the heat capacity of the
Heisenberg model we will use, instead of C̃, the true heat
capacity C = dU/dT = (D/2)C̃ (see Eqs. (30, 34)), which
in our approach tends to D/4⇒ 3/4 at low temperatures.
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Fig. 3. Temperature dependence of the gap parameter G for
the checkerboard antiferromagnet.
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Fig. 4. Temperature dependence of the reduced energy for the
checkerboard antiferromagnet.

The temperature dependence of the heat capacity, com-
pared with previous MC results of the Heisenberg antifer-
romagnet on the pyrochlore lattice [31] as well as exact
solution of the infinite component classical antiferromag-
net on the pyrochlore lattice [23] are shown in Figure 5. We
see that the behavior of these two different models [31,23]
on the pyrochlore lattice are very similar to our results on
the checkerboard lattice, thus confirming the analogy of
these two structures despite their different space dimen-
sionality.

Using equation (39) we compute the low and high tem-
perature asymptotic behavior of the reduced susceptib-
ility χ̃

χ̃ ∼=
{

1/4− θ/32, θ � 1
(1/θ)(1− 3/θ), θ � 1. (40)

Its dependence at all temperatures is reported in Figure 6.
Here also, we recover a behavior very similar to the one

0.0 1.0 2.0 3.0
0.00

0.20

0.40

0.60

0.80

θ ≡ T/T
C

MFA

C = dU/dT

Fig. 5. Temperature dependence of the heat capacity of the
checkerboard antiferromagnet. The MC results of reference [31]
for the Heisenberg model (D = 3) on the pyrochlore lattice are
represented by circles. Black line corresponds to the exact so-
lution of the infinite component Heisenberg antiferromagnet
on the pyrochlore lattice [23]. Dashed line corresponds to the
exact solution of the infinite component Heisenberg antiferro-
magnet on the checkerboard lattice.

0 1 2 3 4 5 6 7 8 9 10
0.00

0.10

0.20

0.30

θ ≡ T/T
C

MFA

χ∼

1/θ (MFA)

1/θ (1−3/θ) , (D → ∞)

1/4 - θ/32 , (D → ∞)

Fig. 6. Temperature dependence of the reduced uniform sus-
ceptibility of the checkerboard antiferromagnet. Asymptotes
for high and low temperatures are given, for both the infinite
component model and the mean field case.

of the pyrochlore lattice where MC simulations and ana-
lytical results have been obtained for the Heisenberg an-
tiferromagnet [32] as well as exact results for the infinite
component classical antiferromagnet [23]. The similarity
between our results and the local approximation [33] de-
veloped in reference [32] suggest that the checkerboard
antiferromagnet has its thermodynamics governed by lo-
cal correlations, as it is expected in a classical spin liquid.
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5 Real-space correlation functions

The low-temperature behavior of the σ correlation func-
tions of equation (33) is dominated by their asymptotic
form at small wave vectors, where the would be Gold-
stone mode is defined, i.e. at q = (±π,±π) + q̃, |q̃| � 1.
According to equations (8), we find, (14), and (37), by

σ1 ∼= 2, σ2 ∼= 2κ2

κ2 + q̃2
(41)

where the quantity κ2 = θ in σ2 defines the correlation
length

ξc =
1
κ

=
1√
θ
· (42)

Appearance of this length parameter implies that the real-
space spin CFs defined, according to equations (17, 4), by

sll
′

ij = v0

∫
dq

(2π)d
eiq·(rli−rl

′
j )Uln(q)Ul′n(q)σn(q) (43)

decay exponentially at large distances at nonzero temper-
atures. In contrast to conventional lattices, divergence of
ξc at θ → 0 does not lead here to an extended short-
range order, i.e., to strong correlation at distances r . ξc.
The zero-temperature CFs are purely geometrical quanti-
ties which are dominated by σ1 and have the form

sll
′

ij = 2v0

∫
dq

(2π)d
eiq·(rli−rl

′
j )Ul1(q)Ul′1(q). (44)

It is convenient to enumerate CFs by the numbers nu
and nv defined by equation (2). Thus sll

′
nu,nv is the correla-

tion function of the l sublattice spin of the “central” unit-
cell (0, 0) with the l′ sublattice spin of the unit-cell trans-
lated by (nu, nv). Let us calculate the CFs with l = l′ = 1
at large distances along the horizontal line in Figure 1, at
small but non zero temperature. We use the asymptotic
form of the matrix Uln(q) for q = (±π,±π) + q̃, |q̃| � 1,
as well as the asymptotic form of CFs in equation (41).
This allows to write this correlation function as

sll
′

ij = v0

∫
dq̃

(2π)d
(−1)neinq̃x

(
U2

11(q̃)σ1 + U2
12(q̃)σ2

)
= 2v0

∫
dq̃

(2π)d
(−1)neinq̃x

(
q̃2
y

q̃2
+
q̃2
x

q̃2

κ2

κ2 + q̃2

)
· (45)

Simplifying this expression and taking into account that
the integral of the cosine over the whole Brillouin zone is
zero, one arrives at the asymptotic form

s11
n,0
∼= (−1)nκ

πn
K1(κn) ∼=


(−1)n

πn2
, κn� 1

(−1)nκ2

√
2π

e−κn

(κn)3/2
, κn� 1,

(46)
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Fig. 7. Real-space correlation functions s11
n,0 at T = 0 calcu-

lated from equation (44) along an horizontal line. The distance
unit is the interatomic spacing. The asymptote given by equa-
tion (46) is shown by the dashed lines.

where Kν(x) is the Macdonald (modified Bessel) function.
The strong decrease of this correlation function with dis-
tance even at T = 0 (κ = 0) is not surprising, since our
solution spans the whole highly degenerate ground-state
manifold and this degeneracy is not lifted in the limit
D → ∞. At small but non zero temperature, spin-spin
correlations are exponentially decaying as if interactions
were renormalized to zero and drive this system to a para-
magnetic fix point for finite temperatures. Let us calculate
more generally the CFs with l = 1, 2 and l′ = 1, 2 at large
distances along the horizontal line in Figure 1, at zero
temperature. Following the same previous procedure, we
obtain

s11
n,0 = s22

n,0 =
(−1)n

πn2
, s12

n,0 =
(−1)n

π(n+ 1/2)2
(47)

where n is in unit of the inter-cell distance. We note that
despite the divergence of the correlation length ξc when
lowering the temperature, the model do not order, which
clearly defines this system as a classical two dimensional
spin liquid.

6 Discussion

In the main part of this article, we have presented in de-
tail the exact solution for the D = ∞ component classi-
cal antiferromagnet on the checkerboard lattice. The so-
lution does not show ordering at any temperature due to
the strong degeneracy of the ground state, and thermo-
dynamic functions behave smoothly. In contrast to con-
ventional two-dimensional magnets, there is no extended
short-range order at low temperature, and T = 0 is not
a critical point of the system. Although the correlation
associated to the would be Goldstone mode diverges as
ξc ∝ T−1/2, the power law decay 〈s0sr〉 ∝ 1/r2 at zero
temperature of the spin correlation functions leads to the
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loss of correlations at the scale of the interatomic dis-
tance. All these properties characterize this model as a
two-dimensional classical spin liquid. As these results are
obtained within the D = ∞ component classical antifer-
romagnet, it is expected that it mimics the large S value
Heisenberg antiferromagnet on the checkerboard lattice.
Surprisingly, there are results [4,5] suggesting that for
large S, the Heisenberg antiferromagnet should be ordered
on this lattice. At this stage, the discrepancy between the
different approaches is not clear. A possible explanation,
as reported in reference [4], “is that for large S, there
should be quantum order by disorder (as supported in [5])
but this order by disorder comes with an energy scale of
J/S rather than J . Therefore, in the classical limit, the
temperature at which the correlation length grows expo-
nentially goes to zero. In other words, the limits T → 0
and S → ∞ (or D → ∞) should not commute.” Never-
theless, it should be stressed that even if there is a dis-
crepancy at T = 0, for finite T , we expect the D = ∞
case to correctly describe the checkerboard Heisenberg
antiferromagnet as any critical behavior is expected to
appear only in the zero temperature neighbourhood. A
similar problem has been encountered within the present
formalism applied to kagomé antiferromagnet [28]. Here
again, finite temperature properties of the infinite com-
ponent spin vector model have been found to be close
to the D = 3 Heisenberg case. However at T → 0, the
method misses the “order by disorder” phenomenon which
selects the coplanar spin manifold. As a consequence, the
D = 3 zero temperature specific heat is much closer to 1,
C = 11/12kB, than it would be if really one third of the
degrees of freedom were still fluctuating (as suggested by
a mean field analysis). Whether 1/D corrections could re-
solve this discrepancy is still a work to be done.

Despite the dimensionality of the checkerboard lattice
(d = 2), there are many similarities with previously ob-
tained results on the pyrochlore lattice (d = 3). The spe-
cific heat has in particular, the same value at zero temper-
ature [23,31] for D = 3. Susceptibility is also very similar
with the one of the Heisenberg antiferromagnet as well
as the infinite component classical antiferromagnet on the
pyrochlore lattice. MC results, as well as exact and analyt-
ical results are very close to the one obtained here [23,32].
This is not surprising as the spin liquid behavior implies
that the lattice is mainly described by local fluctuations.
In fact, it is true at least for finite temperature thermo-
dynamics. Why the present approach can lead to correct
results for the pyrochlore case and not for the checker-
board case at very low temperatures has not been ad-
dressed in the present work. We can only note that the
common point between the two lattices is the local con-
nectivity which is clearly well taken into account within
the D → ∞ formalism. Whether dimensionality is rele-
vant is not clear. At this stage, it can be noted that for
the kagomé case, the D→∞ formalism has missed the re-
duced specific heat mechanism (see Refs. [28,34]) while for
the pyrochlore case, it has been reproduced (see Ref. [23])
Therefore, discrepancies with D = 3 descriptions could be
ascribed to dimensionality although other subtle phenom-

ena that are not taken into account when D→∞ cannot
be ruled out without studying the same model when in-
cluding 1/D corrections.

To conclude, this classical approach indicates that for
infinite component spin value, the checkerboard antifer-
romagnet should be disordered and behave as a spin liq-
uid. We give some arguments why the present approach
is at variance with results of reference [5]. It is interest-
ing to note that for small spin value, the checkerboard
antiferromagnet is expected to order [4–6]. Therefore the
checkerboard antiferromagnet cannot be compared to the
pyrochlore antiferromagnet even if its geometry defines it
as its two dimensional analog. Even if they have the same
unit cell, it is probably the global geometry of the under-
lying Bravais lattice that drives the physics and not only
the local connectivity.
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